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A Method of Solution for Painlev6 Equations:

Painlev4 IV, V

by

A.S. Fokas, U. Mugan and M.J. Ablowitz

1. INTRODUCTION.

The mathematical and physical significance of the six Painlev6

transcendents, PI-PVI, has been well established. Their mathematical

importance originates from the following: i) P. Painlev6 [1] and B.

Gambier [2], at the turn of the century, classified all equations of the

form qtt = F(qtqt) where F is rational in qt, algebraic in q and

locally analytic in t, which have the Painlev6 property, i.e. their

solutions are free from movable critical points [3]. Within a Mbbius

transformation, they found fifty such equations; these equations can

either be integrated in terms of known functions or can be reduced to

one of the six Painlev6 *ranscendents. ii) R. Fuchs [4] and R. Garnier

[5] considered Painlev6 equations as the isomonodromic conditions for

suitable linear systems with rational coefficients possessing regular

singular points. In other words, Fuchs and Garnier established the existence

of compatible linear systems which turn out to be the analogue for Painlev6

equations of the so called Lax pairs [6] for solvable nonlinear evolution equa-

tions. The condition of isospectrality is now replaced by isomonodromicity. How-

ever, apparently the above authors did not pose the question of using these Lax

pairs to integrate the Painlev4 transcendents. iii) Ablowitz, Ramani and Segur
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[7] discovered a remarkable connection between equations with the Pain-

lev6 property and nonlinear PDE's solvable by the inverse scattering

transform (IST). Invariant solutions of such POE's satisfy equations

with the Painlevi property. (More precisely, associated with such a POE

consider an ODE which describes those solutions of the POE which remain

invariant under the action of some Lie-point group; then all solutions

of this ODE which can be obtained via the IST of the corresponding POE

have the Painlevg property, see also [8]). For example, proper exact

reductions of the Korteweg-deVries (KdV) equation lead to PI and PII

[9); PHI and special cases of PIll and PIV can be obtained from the

exact similarity reduction of the modified KdV, sine-Gordon and the non-

linear Schrbdinger equations, respectively [10]; special cases of PVI

can be obtained from exact reductions of the three-wave resonant inter-

actions [11] and from the Ernst [12] equation [13]. iv) H. Flaschka

and A. Newell [14], M. Jimbo, T. Miwa and K. Ueno [15] considered Pain-

lev6 equations as isomonodromic conditions for suitable linear systems

possessing both regular and irregular singular points. These systems

appear more suitable than the linear systems introduced in [4] and [5]

for both integrating the Painlev6 transcendents, as well as for studying

their asymptotic behavior [16]. Garnier [17] also considered linear equa-

tions with irregular singular points in connection with the Painlev6

equations but apparently did not pose the question of using this connec-

tion to integrate these equations.

The physical significance of the Painlev4 transcendents follows from

their applicability to a wide range of important physical problems.
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Painlev4 equations appear in nonlinear waves (see iii) above) in quantum

field theory, in statistical mechanics [18]-[30], etc.

Associated with the exact integrability of Painlev6 equations

there exist two interrelated aspects: (i) Find a method for generating

particular solutions. (ii) Find a method for solving the initial value

problem. With respect to () we note: (a) There exist certain explicit

transformations which map solutions of a given Painlev6 equation to solu-

tions of the same equation but with different values of the parameters.

Such maps, called Schlesinger transformations, were given by Lukashevich

and Gromak [31]-[341 for PII-PV and by Fokas and Yortsos [35] for PVI.

Furthermore it turns out that for certain choices of their parameters PII-

PVI admit rational solutions as well as one-parameter families of solu-

tions expressible in terms of Airy [2], [36], Bessel [37], Weber-Hermite

[38], Whittaker [39] and hypergeometric [40] functions respectively.

Using the above transformations and special solutions, one can construct

(for certain choices of the parameters) various elementary solutions of

PII-PVI. These solutions are either rational or are functions which are

related, through repeated differentiations and multiplications, to the

above mentioned classical transcendental functions. (S) Ablowitz and

Segur [10] characterized a non-elementary one parameter family of solu-

tions of PH1 through a Gel'fand-Levitan-Marchenko integral equation of

the Fredholm type. (y) Fokas and Ablowitz [41] characterized a two-

parameter family of solutions of PH1 using a matrix system of Fredholm

integral equations. However, in both (6) and (() the free parameters were

not related to the initial data of PIT.
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The main focus of this paper is to give a method to solve the

initial value problem of the Painlev equations. In this respect we

note: (i) Flaschka, Newell, Jimbo, Miwa and Ueno introduced a new

powerful approach for studying the associated initial value problem;

solving such an initial value problem is essentially equivalent to solving an

inverse problem for a certain isomonodromic linear equation (see (iv)

above). In analogy with the IST method introduced by Gardner, Greene,

Kruskal and Miura [42] we call the above method an inverse monodromic

transform method (IMT). (ii) Flaschka and Newell [14] applied the above

method to the solution of PH1 and to a special case of PIll. They form-

ulated the inverse problem in terms of what the authors

of [14] call a system of singular integral equations. (iii) Jimbo, Miwa

and Ueno [15] considered the Painlev6 equations within the larger program

of study of monodromy preserving deformations for a first order matrix

system of ODE's having regular or irregular singularities of arbitrary

rank. The inverse problem is solved in terms of formal infinite series

uniquely determined in terms of certain monodromy data. (iv) Fokas and

Ablowitz demonstrated that the inverse problem of P11 can be formulated

as a matrix, singular, discontinuous, homogeneous Riemann-Hilbert (RH)

problem defined on a complicated contour. This has conceptual and prac-

tical implications: Conceptually, it becomes clear that there is a

unified approach to solving certain initial value problems for equations in 1,

1+1 (one spatial and one temporal) and 2+1 dimensions. Using

techniques from RH theory, the RH problem can be simplified sub-

stantially (it can be mapped to a series of regular, continuous RH problems,

each defined on the real axis).
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In this paper we present a general method for solving the initial

value problem associated with a given Painlev4 equation. This method,

which simplifies and extends ideas of [43], involves three main steps:

1. Use classical theory of linear ODE's to formulate a RH problem for a func-

tion called Y(z,t) which solves the underlying isomonodromic linear equa-

tion. This basic RH problem is, in general, a matrix singular, discontin-

uous, problem formulated on a complicated contour (several intersecting

rays) and is uniquely defined in terms of certain monodromy data. 2.

Choose the parameters of the given Painlev6 equations in such a way that the above

problem is nonsingular; then map the basic RH problem to series of RH prob-

lems defined on simple contours. All of these problems except one are

continuous. Furthermore, some of them can be solved in closed form (in

terms of a quadrature). Use certain auxiliary functions to map the dis-

.continuous RH problem to a continuous one. Then apply the rigorous re-

sults of the RH theory, e.g. [44] to establish the existence and unique-

ness of the solutions of the above continuous RH problems. 3. Use the

basic RH problem to obtain Schlesinger [51], [13], transformations, shifting by

an integer or by a half integer all the parameters of the given Painlev6

equation. Hence, using these transformations, the study of the

singular RH problem reduces to the study of thp regular one. We note

that for special choices of the monodromy data the basic problem can be

solved in closed form. This yields particular solutions of Painlev6

equations expressible in terms of the classical transcendental functions

mentioned above.

The above method is applied to the solution of the initial value

problem of PIV and PV: The RH problem corresponding to each of these
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equations is mapped to two RH problems on simple contours, one of which

can be solved in closed form, while the other can be made continuous.

Furthermore, Schlesinger transformations are derived for both PIV and

PV. For special choices of the monodromy data the basic RH problems for

PIV and PV can be solved in closed form; this yields solutions of PIV

and PV in terms of Weber-Hermite and Whittaker functions respectively.

PII is considered in [45], using a different isomonodromic spectral

problem than the one used in [43]. These results, and Pill (which is

related to a special case of PV [9]) will be presented elsewhere. PVI

has been solved by C. Cosgrove [13] and P1 remains open.

The Hamiltonian structure of the Painlev6 equation is studied in

[14] and [56].

2. THE GENERAL FRAMEWORK

2.1. RH Problems.

Let C be a simple, smooth, closed (or infinite) contour dividing the complex z-

plane into two regions D+ and D (the positive direction of C will be

taken as that for which D+ is on the left).

0-

C

Figure 2.1

A function ¢(z defined in the entire plane, except for points on

C which will be called sectionally holomorphic if: i) the function '(z)
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is holomorphic in each of regions D and D except, perhaps, at z ;

ii) the function P(z) is sectionally continuous with respect to C,

approaching the definite limiting values t+(d, o-( ) as z approaches

a point c on C from 0+, or D-, respectively. The classical homogeneous

RH problem is defined as follows [46]. Given a contour C, and a function

G( ) which is HOlder on C and det G(t) # 0 on C, find a sectionally

holomorphic function (z), with finite degree at -, such that

o (c) =G(c )$(), on C, (2.1)

where €(P) are the boundary values of (z) on C. If G(c) is scalar, (2.1) is solv-

able in terms of quadratures. If G(r) is a matrix valued function,

then (2.1) is in general solvable in terms of a system of Fredholm

integral equations. Various generalizations of the above RH problem are

possible. For example: i) The contour C may be replaced by a union of

intersecting contours. ii) G(4) may have simple discontinuities at a

finite number of points; in this case one allows ¢(z) to have integrable

singularities in the neighborhood of these points. iii) RH problems may

be considered in other than Hlder spaces (e.g.[47]): jv) One may con-

sider inhomogeneous RH problems *+( ) = G(c)¢'(c) + F(C) on C.

It is interesting that the first RH problem was formulated in con-

nection with aTr inverse problem (see [43] for references). Actually, RH

problems are intimately related to the solution of inverse problems in

1+1 (one spatial and one temporal), 2+1 and I dimensions:

2.2. Inverse Problems in 1+1

We recall that a necessary condition for a given nonlinear equation

for q(x,t) to be solvable via IST is that this equation is the compati-



bility condition of a pair of linear equations. Let us consider the

modified KdV

qt + qxxx - 6q2qx = 0 (2.2)

as an illustrative example [48]. Equation (2.2) is the compatibility

condition of

I x(Cx,t) = C + xxt)+)3.(2,x,t), (2.3a)
( 0 i q(x~t) 0

= i -i3_"2iq2 4q 2+2iq x+2q 3qxx ,iIFt(k 'x 't ) = 4q142_2iq.C_2q3_ qx Oi 3 +2iq 2 Tcxt)(.

We first note that the above Lax pair is isospectral, i.e. dW/dt = 0.

Also it turns out that equation (2.3a) is of primary importance; equation

(2.3b) plays only an auxiliary role. To solve the initial value problem,

for initial data decaying as Ixi - - , one first formulates an inverse

problem for T(z,x,t): Given appropriate scattering data reconstruct T.

By studying the analytic properties of T with respect to z, where T sat-

isfies (2.3a), one establishes that there exists a T which is a section-

ally meromorphic function of z, with a jump along the Re z axis. This

jump, as well as the residues of the poles, are given in terms of approp-

riate scattering data. Thus the inverse problem is equivalent to a

matrix, regular, continuous, RH problem defined along the Re z axis and

uniquely specified in terms of the scattering data.

Since in the above discussion we have only used (2.3a), it is

evident that one may pose an inverse problem for an appropriate function q(x). How-

Al
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ever, this result is useful for solving the initial value problem of

q(x,t) only if q evolves in such a way in t, that the scattering data is

known for all t. If T evolves in t according to (2.3b) (i.e. if q

solves (2.2)) then it turns out that the evolution of the scattering

data with respect to t is simple. Hence the above RH problem is speci-

fied in terms of initial scattering data; its solution yields Y(4,x,t)

and then (2.3a) gives q(x,t).

2.3. Inverse Problems in 2+1.

Let us consider the Davey-Stewartson equation (a two dimensional

analogue of the nonlinear Schr6dinger equation)

+ (Q~Q = 2 2 2
iQt + (xxQyy -IQI2Q+Q, xxayy2x(IQ2)x :I, a = :1

(2.4)

as an illustrative example [49]. A Lax pair for (2.4) is given by

= = i4 (JT-TJ) + qT + OJTy, I . (0 -1) q 20 0 (2.5a)

= A3 Ifyy + A2 y + A I - 2 (A3 i-TA 30) + 
2 i A3Ty + i;A2 T, (2.5b)

where AI , A2  A3 A30 are appropriate matrix functions of Q, Q ( denotes

the complex conjugate of Q).

The situation is conceptually similar to the case of 1+1: To solve

the initial vlaue problem for q(x,y,t) one first formulates an inverse

problem for (z,x,y,t). Depending on the value of z there exist two

different cases (for brevity of presentation we assume non-existence of

poles, i.e. non-existence of lumps): (i) a = -1. There exists a which
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is a sectionally holomorphic function of z and which has a jump along

the Re z axis. This jump is also given in terms of scattering data but

it depends on them in a non-local way. Thus the inverse problem is

equivalent to a non-local, matrix, regular, continuous RH problem defined

along the Re z axis and uniquely specified in terms of scattering data.

(ii) o = i. There exists a IF which is bounded for all complex z, but

which is anlaytic nowhere in the complex z plane. However, its departure from

holomorphicity a'/ai can be expressed linearly in terms of T and appropriate

inverse data. Thus, now the inverse problem is equivalent to a i (OBAR)

problem: Given a/'ai reconstruct T. The a problem is a generalization of

a RH problem and has been studied extensively in the mathematical lit-

erature [50].

Using (2.5b), again one shows that the inverse scattering and the

inverse data evolve simply in time. Hence, the above RH and a problems

are specified in terms of initial data; their solutions yield T(,x,t,t)

and then (2.5a) gives q(x,y,t).

2.4. Inverse Problems in 0+1.

The Lax pair associated with the PIV equation

d 2 yl dv?. 33 2 2 a 26
dt 2 =2-y ( 2 + y + 4ty 2 + 2(t2 + ')y + (2.6)

is given by [15]

F1 \ /t u> (.0-
Y z (z) [0 2j+ 2 Y(z).0 -1 2 (V-6e-. )  -t Lv-(v-2eo (eoV))

0(0 0-v

2. 7a)
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Y (z) Z + (2.7b)
0 - (v-1, -

Indeed Yxt Ytx implies

-4v + y' + 2ty + 460  d = -u(y+2t),

dt ' dt

v 2(2.8)
dv = - v + ( e + 0 )y ,
dt y 0

where,

a = 2e - 1, s -8e2 (2.9)

As in the cases of 1+1 and 2+1, solving the initial value problem

of PIV reduces to solving an inverse problem for Y: Reconstruct Y(z,t)

in terms of appropriate monodromy data. Again this inverse problem

will be solved in terms of a RH problem. Thus it is essential to study

the analytic properties of Y with respect to z. However, in contrast to

the analogous IST problem in 1+1 and 2+1, the task here is straight-

forward: Equation (2.7a) is a linear ODE in z, therefore its analytic

structure is completely determined by its singular points. In this part-

icular case z = 0 is a regular singular point and z = is an irregular

singular point of rank 2. Complete information about the singular point

z = 0 is provided by the monodromy matrix M Complete information about

z = - is provided by the monodromy matrix M and by the Stokes multipli-

ers a, b, c, d. Solutions of (2.7a), YO and YI. normalized at zero and

infinity respectively are related via a connection matrix E0 with entries

CT' B0, YO
t' 6 0* Taking into consideration the above singularities, there

exist a sectionally holomorphic function Y, with jumps across four
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rays, arg z - 4' 4, 4 T and with singularities at z = 0, z = . The

jumps are specified by a, b, c, d and the nature of singularities by Mo,

M . This leads to a matrix, singular, discontinuous RH problem, defined

on the above rays and specified in terms of the monodromy data

Monodromy Data (MD) = {a, b, c, d, 0, 0' YO, 60;. (2.10)

Consistency of the above RH problem yields

n Gj)MW = E, -M1 E1 (2.11)

where G. are the Stoke matrices uniquely defined in terms of the Stokes

multipliers. Using (2.11) and certain similarity arguments it can be

shown that all MD can be expressed in terms of two of them. Furthermore,

equation (2.7b) implies that the MD are time-invariant. Hence the above

basic RH is specified in terms of two initial parameters (these two initial

parameters are obtained from the two initial data of PLY). The solution

of this RH problem yields Y(z,t) and hence (2.7a) yields y(t).

This RH problem can be simplified considerably: (i)

Assume 0 < e < 1, 0 < e. < 1, 00 ; then the above RH problem is non-

singular. It is interesting that the basic RH problem can be used to obtain

Schlesinger transformations which shift e0 and e by a half-integer.

By using these transformations the general case is reduced to the regular

case. (ii) The basic RH problem can be mapped to a sequence of two RH

problems, one on the line arg z = and the other on the line arg z = -

The first one is continuous (both at z = 0 and z = ); furthermore it

can be solved in closed form. The second one is discontinuous both at
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z = 0 and z = =. By using standard auxiliary functions [46] this discon-

tinuous problem is mapped to a continuous one. The theory of con-

tinuous RH problems on simple contours can then be used to establish uniqueness

and existence of solutions. Elementary solutions of PIV, expressible in

terms of Weber-Hermite functions are obtained naturally within the above

formalism.

We hope that the above discussion elucidates the connection between

IST (inverse scattering transform) and IMT (inverse monodromic transform):

There exists a unified approach to initial value problems in 1, 1+1, and

2+1 dimensions: Solving the initial value problem of an integrable equation:

q(t) or q(x,t) or q(x,y,t) is equivalent to solving an inverse problem

for a suitable eigenfunction '(z;t) or '(z;x,t) or '(z;x,y,t). The

inverse problem generically takes the form of a RH problem for equations

in 1, 1+1, and in general the form of a 3 (DBAR) problem for equations in

2+1 (the DBAR problem being a generalization of a RH problem). To define the

relevant RH or DBAR problems one needs to study the analyticity properties

of T with respect to z. Furthermore these problems are uniquely defined

in terms of certain asymptotic data of the underlying linear system satis-

fied by Y (monodromy data in the case of equations in 1 dimension and

scattering data in the case of equations in 1+1 and 2+1).

We note that the linear limit of the IST yields the Fourier trans-

form of q(x,t). In that sense IST is the nonlinear analogue of the Fourier

transform [52]. Since the linear limit of the IMT is the Laplace's method

for linear ODE's, the IMT is the nonlinear analogue of the Laplace's

method.
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2.5. Solution of a Matrix Continuous RH Problem.

From the above discussion it follows that solving the initial value

problem of a Painlev6 equation reduces to solving a matrix continuous RH

problem along a simple contour. We recall that the solution of the RH problem

(2.1), where G() is Holder (i.e. all its entries satisfy

IGjk(c1)-Gjk( 2)I AlI 1 - 2 K, for some constants A and 0 < X < 1, for all

on C) and det G(c) 0 on C is given by

€'( - - -I I d G'I )G( )'I¢( - : * ' (2.12)

where 0- is the value of (z) at infinity (we assume that t has a finite

degree at infinity). Equation (2.12) can be obtained by writing the

conditions that 0+, (D are + and - functions respectively and then replac-

ing €+ by Go.

In what follows we define RH problems on suitable rays. These rays

are naturally defined for a given problem (see §3.2).

, i q
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3. PAINLEVE IV

In this section we consider the fourth Painlev6 equation (2.6).

We first use equations (2.7) to study the analytic properties of Y(z,t),

as well as the properties of the monodromy data.

3.1. The Direct Problem.

Proposition 3.1.

Let Y be the solution of (2.7a) analytic in the neighborhood of

z = 0 and normalized by the requirements that det Y = 1 and that Y also

solves (2.7b). Let Yj, j 1,...,4 be solutions of (2.7a) analytic in

the neighborhood of infinity such that det Y land Y . as

in S, Y, is the formal solution matrix of

(2.7a) in the neighborhood of infinity, and the sectors S. are given by

IT TI 7 3?,

S < arg z < S, $2: < arg z < 4

3 n 5'T5 7-

S arg z < L: arg z < - (3.1)3~ 44 444

S 3- 5,
The rays C1  ....C4  are defined by arg z- -, 4 respectively.

C3  C2

Y 2

C4  CI

Figure 3.1



-16-

Then the analytic functions Y0 9 Y1 .... ,Y4 satisfy:

i) YO(Z) Yo(Z)z as z - 0; DO 0 Diag(eao-e 0 ), e0 # 2 n f ,

(3.2)

where Y0(z) is holomorphic at z 0. (If a0 = n/2, Y0 (z) has

a logarithmic singularity).

(ii) Yj z) - Y®(z)eQ(Z)( '0) as Izi - ®, z in S., D. Diag(e.,-e ),

(3.3)
z2

Q(z) Diag(q,-q), q(z,t) = + zt, Y (z) is holomorphic at

z=, and Y(z) I + 0T.

(2ie 0  2i'r eo

e 2i (35

Y (ze2 i ) 0 , (3.4)

n ni f =0 0 i f 6 0 1 i f 0 :

(iv) Y2(z = Y WzGI, Y3 z W Y2(z G ,  Y4( : Y (z)G3

YzWe
2 i

Y1(z : 4( z )G 4M (3.5)

where (a G3 ( ) , ( ) )
GA I d M ,: 2i ,

( )( M e (3.6)

(v) Y(Z) = Yo(z)E0 , E0  ) , det E0 = 1. (3.7)
0 0)



-17-

Furthermore, the parameters

MD i {a,b,c,d,aoSoYo,60} (3.8)

satisfy the following consistency condition.

4
(vi) ( R G.)M. = E- M-!E (3.9)

j=1 j 0 0 0

Proof.

1. Analysis near z = 0:

It is well known(see for example [53])that if the coefficient matrix of a linea

differential equation has an isolated singularity at z 0, the solution of

the differential equation will in general be singular at z = 0.

This solution can be obtained in the form of a formal power series; this

series actually is convergent in an appropriate circle of the com-

plex plane. In this particular case if Y0 
= (y(1), y(2 )) we find:

H(2) (3. fina
Y(l)(zZ) z 1 e- ((t) + 1 l) Z +0 2v 2eI + 0 2

(2))
02Ao e 1 2e -1 ( H... .

(3.10b)

where,

(1)H(1) -Y(V 0-e) - vt * (I + 290-v)(t + 2vy),



H (2 [t + 2(1-v) (v o

(1) 2 y - 02V) - y
GMdt , 2v

H (t) J
(Expressins fr H(2' 12) may also be given, but are not necessary for our

discussion). The multiplicative constants with respect to z in (3.10) are fixed

by the requirement that (3.10) also satisfy (2.7b). We note that when

0 = n/2 there will be, in general, a logarithmic term and the two

linearly independent solutions have the form:

S(2) (1) -n
0  (z),(z) = J(in z)Y 0  + z 0 (z), DO  = , (3.11)

where 02) is a polynomial in z and J is a complex constant. Equations3.0) iml oz2i ) 2i Do

(3.10) imply YY0 (ze ) 0(z)e . Similarly, equations (3.10) and

(3.11) imply (3.4).

2. Analysis near z

The two linearly independent formal solutions Y(z) (YI) (z),

Y (z)) of (2.7a) have the expansions:

Y () z) ( I: + 1 -K I .+ eq (3.12a"'

0 (U (V-O 0 )) z

Y (2) ( ) + ( -u2 , +. e q ( 2

1K z z

where

K 1- (v - 20 - (v 0 - O.)(t + Y).

Suppose that Y. is the asymptotic expansion of Y for large z in SI * According
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to the Stokes phenomenon, the asymptotic expansion of YI in sector S2

is given by Y G where G is a constant matrix. Alternatively, one may

introduce different solutions Y1,... ,Y4 such that Yj. is asymptotic to

Y. in Sj. Then, for example, since both Y1, Y2 solve (2.7a) it follows

that Y2 = Y1G1 . where G is a constant (with respect to z) non-singular matrix; using

the asymptotic expansions of Y'9 Y2 it can be shown that GI has the form given in (3.6

[54]. Similarly we take Y5 Y® in S5, where S5: 2n - T arg z < 2- + 4,

then Y5 = Y4G4. Birkof [54] has related Y5 and Y1 " YI and Y5 are defined

for all z, however, they both tend to Y. only in S1 and S5 respectively:

Q(z1) 1 Q(z5) 1 0

Y (z Y,(Zi)e 1, in S1; Y5(z5) zYI (Z5)e (Z) , z5 in S5.z1 5

If z is in SI then zle 2 iW is in S5. Thus

iw 2 Q(ze 2 i  )  D D Q(z) D -2iD
Y Y (zee )e ( ) ® =Y (ze)e )e

zle 1

2i
where we have used that Y(z) is holomorphic at z=- and Q(ze , ) = Q(z1 ). Thus

Y (z )  =y5(ze 2i )e 2ifD

Hence

Y5(z) = Y4 (z)G4, or Y5(ze2i ) = y4 (ze 2i)G 4 , or YI(Z) = Y4(ze 2i)G 4e

3. Connecting Y0 and YP

Since both Y0 and Y1 satisfy (2.7a), YI = Y0 E0 and det E0 = 1,

since det YI = det Y0 1 i. E0 is called a connection matrix.
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4. Consistency.

We first note that if the solution matrices Y1, Y2 are related via

the constant matrix C, and if MIl M2 are their monodromy matrices about

the same regular singular point then

Y1 = Y2C  = > M1= C 1M2C; (3.14)

this because:
e2i 2iir-

YI( ) Y2(ze )C = Y2(z)M2C C YC M2C.

Equations (3.5) imply Y1 (Z) 
= Y4 (ze2i7)G 4MM Y3 (ze 2i )G3G4M....

4
Y (ze2 ift)( a G.)M®. But since M is the monodromy matrix of Y and
1j=l 0

Y1 = YoEo ' then E01 MoE 0 is the monodromy matrix of YI" Thus
4

Y(Z) Y(z )EMoEo( 7, Gj)M., which implies (3.9).
j11

Remark 3.1.

(i) One has two choices: either to consider four different fundamental

solutions YI,...9Y 4 such that . Y -  as Iz - , z in S., or to con-

sider one fundamental solution Y, but then Y -. G.Y' as .z' - , z in S.

We intend to use these Y's to formulate a RH problem, hence it is import-.3

ant to have the same behavior at infinity, that is why we choose four

different solutions.

(ii) The solutions Y. ... Y4 are defined in the whole complex z plane and

the relationships (3.5) are valid everywhere. However, in order to form-

ulate a RH problem we will restrict the domain of the Y' s only in the sectors

that their asymptotic behavior is Y_, thus we will use (3.5) only on the
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rays CI,...,C 4  (see Figure 3.1).

Proposition 3.2.

(i) The monodromy data, MO, given by (3.8) and defined in Proposition

3.1 are time-invariant.

(ii) All of the MD can be expressed in terms of two of them. This

follows from:

1. det E0 = 1.

2. Equation (3.9).

3. If Y solves (2.7) with y satisfying PIV, then Y 1 R YR,

R ; diag(r /2 , r- /2 ), where r is an arbitrary complex constant,

also solves (2.7) with y satisfying PIV. The Stokes matrices G3

and the connection matrix E0 are transformed to G. R-GR,

EO 0 R 'IE R, i.e.

a ra, S b/r, c =rc, d=d/r, O0 :0 ' 0 = /r,

y0  60 a 60 " (3.15)

Thus r may be chosen to eliminate one parameter, e.g. r 8 0'

4. Changing the arbitrary integration constant of 7(t) (see

(3.10) ) amounts to multiplying Y 0)(z), Y 2)(z) by the arbitrary

complex constants p and p- respectively. This maps E0 to

-1
E 0O" PEoS P " Diag(pp ), i.e.

C, = -C0 = P809 'v0-6 -0 k3 .1 6 10 : 0'BO:Po YO :-P' 0 P-

Thus p may be chosen to eliminate one parameter, e.g. p '

(iii) Equation (3.9) implies
2 +[ -2i-(1~bc)e +[ad + (1+cd)(1+ab)]e :2cos2-_. (3.17,



Proof.

(i) Similar to the proof given in [14].

(ii) Y solves (2.7) iff y = y, v = v, u = ur I which is consistent with

(2.8). Parts (ii) 3 and (iii) are straightforward. Equations (3.15),

(3.16) may be chosen to fix two of the entries of the

connection matrix. Then det E0 = 1 and equation (3.9) imply the rest

of the MD in terms of two of them.

3.2. The Inverse Problem.

In what follows we formulate a RH problem for the case that

o < 00 < 1, 0 < 0 < 1. This assumption leads to a regular RH problem.

The general case follows by considering the results of this section and

of §3.3.
In what follows we shall, for convenience of notation, consider RH

problems along suitable rays. Actually, in order to satisfy convergence

criteria these rays must be deformed appropriately. The deformation process

is to connect at large values of z the rays to "asymptotic" curves defined

by Re q(z,t) = 0. These asymptotic curves tend to the straight line rays

(i.e. Re q(z,t=O)) for IzI .

An alternative procedure which we anticipate to be equivalent (but

one which we have not seriously considered) is to deform the rays by a

sufficiently small angle E into the region Re q(z,t) < 0. In this case the

RH problem has jump matrices which rapidly tend to unity as z - . We

expect the limit as £ * 0 of this deformed RH problem should tend to the

solution of the RH problem discussed above.

Theorem 3.1.

Consider the following matrix, regular, homogeneous RH problem alonq

the four rays C1 ,.... C4 (Figure 3.1): Determine the sectionally holo-

morphic function t(z), +(z) = t.(z) if z is in Sj, j 1,..., 4, from the

following conditions:



1. j satisfy the jump conditions

S2(d2)l ) 3 ( ) = 2( )g2( 4), 4  = 3( )g3 )

T (W )= Y4(4e 2 i1r )g4( ) (3.18)

along the rays C2, C3, C4, C1 respectively, where

gj 1 eQ , =1,2,3, g4 e Q M (3.19)
D 

1l

2. ((z) - (z) (I + 0(1)) as zI * , in S. (3.20)z 3,

3. '(z) has at most an integrable singularity at the origin with a

monodromy matrix given by
I1(ze 21T ) = (z)Eo IM0E0, z 0 0. (3.21)

In the above, G, Q, M., D., M0 are defined in Proposition 3.1.

4. The monodromy data MD, given by (3.6), satisfy the properties

given in Proposition 3.2 (ii). Then:
(i) The above RH problem is discontinuous both at the origin and at

infinity. Actually

4 4

gj E 0 M 0 E z - 0; f g . M_, z . (3.22)
j00 j=1

(ii) To obtain the solution of the above RH problem consider the follow-

ing RH problem along the contour CI + C3 : Determine the

1 C3

k 1

C I

Figure 3.2
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sectionally holomorphic function k(z), k(z) = k1 (z) if z is in SI + $2,

k(z) = k2(z) if z is in S3 + S41 from the following conditions:

1. k. satisfy the jump condition

_h I de 2qz Mh 1,nC1
=k 2 h( 1 -be2q ) h on Ca h(z) t (z)

0 -a/c

(z) 1 d -2q(4) (3.23)

2Tri f-z
C2+C4

(If h, h2 denote h in SI + S4 and S2 + S3 respectively then h : hI on C1,

h = h2 on C3 ).

2. k(z) (-) (I + 0(1)) as Izi . (3.24)

3. k(z) has at most an integrable singularity at the origin with a

monodromy matrix given by

k(ze 2 i ) = k(z)hl(O)EoIM E h 1 (0), z 0. (3.25)

The above RH problem is discontinuous both at the origin and at infinity.

Actually if gkIgk3 denote the jump matrices along C1, C3 respectively

then

gk O)E M I(0), z - 0; gkM , z .

3 1 3 1
(3.26)

However, the above RH problem can be mapped to a continuous one using the
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the auxiliary functions

( - tO_ (z -) (3 .27)

to remove the above singularities (see Appendix A).

TY is related to k via:

= kh if z in S1+S2 ; f = khM, M t Diag(1,-a/c) if z in S3  + S4

(3.28)

(i.e. = klh 1l I2 = k1h2 9 , 3 = k2hIM, 4 = k2hIM).

Proof.

(i) We first note that the product of the jump functions gj at an inter-

section point, determines the nature of the singularity of the function

T(z) at this point. For the sake of simplicity assume that T is scalar

ahd that it behaves like z as z -0, in S Then 2 , z g I

e-2iv 4
IF zg 1 (O)g2(O)g3(O), this implies e 1 g(O). Conversely, if

j=1
4 -2i T v
a g.(O) = e , then T , z as z - 0. This analysis is unique within the trans-

j=1

formation v -v+ integer and z * ElIzVE, and its generalization to the case that

T is a matrix and/or the intersection point is infinity is straightforward.

In what follows we take the above integer to be zero since we are only allowing

T to have an integrable singularity.

Equation(3.19) implies

4 4
n1 g n G.)M = Eo1M0'Eo, as z - 0;

j=1 j=1
01 0 0 0 ' a

and hence T(z) - Diag(z , z (00 n/2). Thus Y(z) has

a monodromy matrix M0  at the origin, which is consistent with (3.21).

.Not
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4
Similarly Il g. M.- as zj which is consistent with the fact t hat

j=1 'j

+ O), iag(z z z as Izj

(ii) Consider the following transformations

=kIh 1A 11 I 2 = k 1T3= k 1 4= k (3.29)

where A., .j=1,... ,4 are constant, non-singular matrices and the functions

kit, 2' hi h 2 are defined in S1I + S 2 9 S 3 + S 4 1 S 4 + S1 9 S 2 +S3

respectively:

C C2  C 3

h 2 1
2 

2
h 1k2

6 4  C 3  C2IC

C4 CI~

Figure 3.3
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Recall that

C2: 2 =  'Igi'  C3: 3 = 292' C4  = *393 ' C1  t! = *494 •

(3.30)

Equations (3.29),(3.30) imply:

C2 " h2 = hIA 1g1A21, C4: h1 = h2A3g3A91. (3.31

We choose the A's in such a way that the h-RH problem is continuous

both at zero and infinity.

Continuity at zero: Ag 1A 3g3A4 I as z 0,

Continuity at infinity: A A191A2A 39 3A ' 4 as z -

or

A iGA-iA3G3A-I = I, A 1A- I =1 12 3 34 1 2 3 4

or

M t A-1A = A-1 A G MG (3.32.

2 3 1 4' 1 3

Assume a, c # 0, then (3.32b) implies

M 0
M = a MiI l . 2aM ~ Q

21c 11

Thus, (3.32) imply(A2gilAi I  on C2

h h or h, =h I  on

A3g3A4 on C4
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sic A9 A41gMI)A- AgIA' Hlh

since A 2(Mg3M 1 A 1 1 Hence, letting H1 1 l1

H2 = h2A2, the above reduces to

C2 + C4 : H1 2  ( a22q (3.35)ae 2  I/

Since the H-RH problem is continuous at - we look for a solution such

that H ' I as z * . Let H = (H(1),H(2 )), then

(HIl),H(2))= (HI),H2)) -2q(H(2),0),

or

H -(2 ( = 0 H ) H )- H =-ae-2H )

1 2 1 2 -e 2'

or

1 2 = 0 H l) - H I) = -a -.

Thus

H y ) as in (3.23). (3.36)
ao

Having obtained the solution of the H-RH problem it is straightforward

to formulate the K-RH problem:
C1  = h1AMg -11hi

CI  kI  k2 hIA 4g4AIlh 11 hAIMg4AI  on CI
or k1 = k2

C kAh 1  hIA gA, h Cn3 2 k h2 g2 3 2 29 2 l o 3

(3.37)

Letting A1 = A2 = I, M = 1, M2 1 = 0, equation (3.37) reduces to (3.23a)

and H = h. We note that the k problem inherits its singularities from

the t problem: Consider the product of the jump matrices at infinity and



at the origin (consider (3.37) with A A =

gk h2g2M hM h1Mg4h1  Mgzg
3 1 h22Mh2hM4h k31

I h (O)(hII(O)h2(O))G 2M-i(h21 (O)hI(O))MG 4Mh 1 (0), z - 0.
31

But,

h1 (o)h 2 (0) () = ()
IG I ,

since 1(O)- 02(O) -1 (see (3.23c)). Also M- G 1M G3 1 thus

gkMgk Izi gkI gk hI(O)E0 M0 E0h1 (0), z - 0.
3 1 3 1

(3.38)

Equation (3.38) implies that the monodromy matrix of K at the origin is

h (O)E 1 Eoh-1(O). This is consistent with the facts that K h-I

h1(O 0 MQ0 h K1
and the monodromy matrix of TI is EoI ME 0 (see (3.14)).

Equations (3.38) imply that k has the same singular structure as

T. These singularities can be removed by using the auxiliary functions

(3.27).

Proposition 3.3.

Let (z) be the solution matrix of the inverse problem formulated

in Theorem 3.1. Then y(t),
I du

y(t) .(I L- + 2t), u E -2 1im z 12(z)e
"2q (,)  (3.39)

solves PIV, where T12 (z) is the upper left entry of *(z).

I
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Proof.

Equation (3.12b) defines u in terms of Y (and hence in terms of .),

and equation (2.8b) defines y in terms of u.

3.3. Schlesinger Transformations.

As it was mentioned before, the case of general 9, can be re-

duced to the case of 0 < 00 < 1, 0 < OW 1. In this section we pre-

sent the transformations which shift the values of 00, 0® by half-integers.

Similar ideas were used by C. Cosgrove [13].

Proposition 3.4.

Let y and y' be solutions of PIV, equation (2.6) with a = 20.-1,

e=-202 and 20 ' 1-, 8' =-2(06) 2 respectively. Let Y and Y' be solutions

of the corresponding isomonodromic problem (2.7). Consider two sets of

transformations:

06 (Do +  n 
0 6= 0  + 2

a b: 2, m,n E 2. (3.40)

G' 10 +m 0' o + 2m+1

Then:

(i) The monodromy data for Y and Y' are the same.

(ii) The solution of the inverse problem for Y' can be obtained from Y:

Y' = RY. There are two cases. In particular:

(a) R(z) is a rational function of z
(3.41)(b) R(z) is z 1/2 times a rational function of z.



- R~z) (o 6\I/3 1 -1/

(3. 42a)

( 0 +uy

0 z R 2 ( z ) ( ) 1 /2 + 
-2 

(1 / u/ 2I ,2

-~ 7 3. 42b)

0o  7 3o -- 0, Voe" AV-eo-O.)) z

SI u/

(3. 42c)

1

= 0 - 2 R (z) z 112 (V-260/y u/2 )
( 3. 42d)

The transformations (3.42) generate all the Schlesinger transformations

specified by (3.40). For example, if R5 R 6are defined by

z = 2 + 1,/

R R

Then

S R1R 3 R 6 (3.43",

5 1 3' 6 RRz

The above transformations naturally induce transformations maQig

solutions of PIV to solutions of PIV with differen* values of the para-

meter. For example R52 implies

y O '-,[2vIt v + ,: -U(V

, 2v( v .  (v -3.44)

The~ ~ abvyrnfrain aual nuetasomtosm~~n
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where 0', '. are defined in (3.42b) in terms of 0,00

Proof.

We first note that equation (3.17) is invariant under the transform-

ations 00 . 0', 0. 0' iff 06, 0' are given by equations (3.40).
0

Then Propositions 3.1, 3.2 imply that the solvability of the inverse

problem for Y' is equivalent to that of Y. Under the transformations a,

b, M is mapped to M' where M' = M_, M' = -M respectively. Thus,

assuming Y' = RY, R R. if z in Sj, then the jump conditions imply a

RH problem for R:

a: R.+I = R. on Cj+ b: Rj+ I  R. on Cj+ I  j = 1,2,3.

R1 = R4  on CI  R1(z) -R4 (ze 
2 i ) on CI  (3.45)

Equations (3.45) imply (3.41); to determine completely the form of R(z),

i.e. to specify the rational function of z, one uses Y = RY to obtain

the following boundary conditions for R:

a: R(z) Y6(z)zn Y0  (z) as z - 0, 7 t diag(1,-l)

R(z) Y (z)(!)mRy-I(z) as JzJ . (3.46)

2n+1 2m+l
b: as above with n - 2 , 2 (3.47)

If y'' ', 0'= -1/2, 0' o + 1/2 are the transformed

quantities of y,u,v,0 0,® under the transformation given by RI(z), i.e.

Y'(z;y",u',v' , = R1/2,yuv , -/arete)Y(z;y aso)m

and if y", u", v", 0" :' + 112, V" '® 11I2 are the transformed

0 00m



p

quantities of y' , u', v , "06 ?$ then from the transformation giver .

i.e.
) r

Y" Z y" u" . .. '" = z y ,u', .... )Y z ,

a tedious but straightforward computation shows that,

R 2 (z;y'(y,u,...,o.),...)RI (Z;y,u,...,c_) I.

Similarly,

R3(z;y'(y,u,... ,o ),...)R 4 (z;y,u,.. .,C) : I.

Also

R 1 (z;y '(y ,u .... . ),...)R 3(z;y u ..... . ) R5 (z),

R 2(z;y'(y,u .... . ) .... )R 4(z;y , .... o ) : R 6(z),

where
u

( O 0 vo_
1 R5 (z) = )z K -_-

O'~~ ( + 1(-oD v(v-2(O)

0) + tu YTv-c O- t

1R 6 (z) + +1 - 2z -1
6 N 2v

N 1 2[t - + + (z - 0 - O)]

Hence, the successive application of the Schlesinger transformations

defined by the multiplier matrices Rk(z), k = 1,2,3,4, maps }0' -.rto

,, = 00 + n/2, o' = + m/2, n,m c 2Z. To obtain equation (3.44), note

01



that the above transformations map equation (2.7a' as follows

Y = AY = Y' = (RA + R )R IY'.

3.4. Special Solutions

As it was mentioned earlier, for certain choices of the parameters

c,a, PIV admits rational solutions or one parameter family of solutions

expressible rationally in terms of the Weber-Hermite functions. Such

solutions, are naturally obtained via the RH formalism presented in §3.2.

For example.

Example 3.1.

Let 0. -00<0< 2, and assume that a = c = 0. Then b = -d,

E = I, and the solution of the RH defined in Theorem 3.1 is given by

/ 110 1i® d de2q(_)(___

T(z) C (3.48)

0
z

where the contour C is defined in Figure 3.4 (C is below the branch cut)

r I

Fiue34N
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Associated with equation (3.48), the solution y of PIV is proportional

to He2 0 -1 (it), where He (t) denotes the Weber-Hermite function p55]

of parameter

Proof

Equation (3.17) implies that it is possible to choose a = c = 0

provided that 9 z -DO + n/2, n E K. Here we will consider the case

of a = -C 0 and, in view of §3.3, we assume 0 < < 1/2. Equation

(3.9) implies b = -d and E0 
= diag(cx0,a0 ). Using the similarity argu-

ment (equation (3.15)) we take a0 = 1. Thus the basic RH problem re-

duces to

+ C' 3: 11, = de2q 1
:~ 'i .=i- de 2qe-2i ,  -2i-: 3

CI  :0 ,=e ,, = 2 e.

Letting f = i,2 the above reduces to

=l f Y - -i ( 3.50)

1 1' 2 = Y2 + n1

The solution of (3.50a) satisfying the boundary condition 13.20), is

given by

(z) :0

Let us consider the homogeneous problem correspondinq to i3.50),

I 1' 2 2

Its solution (satisfying (3.20)) is
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((1) 0' 0.2
z : 3.52)

Thus, the solution of (3.50) is given by

+ 1 dt LL.), (3.53)
IF(z) : (z)(I + 2,

C3 +CI

where the matrix f given by f (0, T)() -  i.e.

0. 1
f f f22 = 0, l e

11 : 21 : 22 : , 12 z -( z>

where - and + denote the limits of z from the - (SI+S 2) and - (S 3+S4 )

regions respectively. Thus

f12  d 2qf = de 2 q (  20 on C
re re

Hence substituting the above in (3.53) and using (3.52) 'we obtain (3.48).

4. PAINLEVt V

The fifth Painleve equation (4.3) can be obtaired [15] as the ccma-

ibility condition of the following linear systems of the ecua'*iors

Y (z) = A(z)Y(z), 4.1a

tZ 
)

where,

I Z L z '

and

i | I I



-37-

1 ~ ~ 2 -ulvt A
0 1 ,

1/ 0 u[v+" -y(w-

0  -(I v - l(w+ C

w v + (0 ° + 8.).

The compatibility condition of (4.1) gives:

t ty - 2v(, -l)2 1(Y_1)[(o-e +o ) y - (30 0+0o+0:0]. (4.2a)
t dv.. ) - 7 1 0l

yv[v + 1(0 ) (V+Oo V + 1(0o+6 +9.)]. (4.2b)

u u(2toyv + 1o_ +0) ] + 1 + (4.2c)
dt 0 2-( 0 1 o o 2 0

d2 1 1 d2 1id 2 x (C.) + + +~x 6YY+I
(-y+ T...(T) -f 2x + +Y-

(4.3)

with,

a oC 001
+ e. 2 eo"e-O 2 e, :- ,a

a • ,., - 'L-2 ~ UY -leo6 1  6•

The general fifth Painleve equation with non-zero is reduced to the

case 6 = -1/2 by scaling; the case 6 = 0 may be transformed to the third

Painleve equation which will be considered elsewhere.

4.1. The Direct Problem

Proposition 4.1

Let Y(O), Y(1) be the solutions of (4.1a) analytic in the neighbor-

S



hood of z = 0 and z 1 1 respectively and normalized by the requirements

that det Y(0 ) 
= det Y (1) 1 1, and that Y(0), Y(1) also solve (4.1b).

Let YI' Y2 be solutions of (4.1a) analytic in the neighborhood of in-

finity such that det Y = det Y2 = 1 and Y. Y as IzI

in Sj, where Y is the formal solution matrix of (4.1a)

in the neighborhood of infinity and

i 2 arg z S < arg z < (4.5)

1 C2  2

The contours C1, C, C3 are defined by arg z - , arg z =2 arg z 0

and 0 < Re z < 1 respectively

C2

Y 2  0_ 
0 C 3  __ I_

I

C

Figure 4.1

Then the analytic functions Y(0) Y(1), Y19 Y2 satisfy:

i ) ~ o ) Z ) Y o ) Z )Z a s z - 0 , 0 O  D a ( O # n 4 5
(1 (0)( (0Z2)

where Y(o)(z) is holomorphic at z = 0 (Y(o) has a logarith-

mic singularity if 00 = n).

. .. . .. i m I I N l mimmml i i mnm mmJ
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(ii) Y(1)(z) Y(1)(z)(z-l) as z - 1, DI  Diag( 2 2 n, (4.7)

where Y (1 )(z) is holomorphic at z = 1 (Y(1) has a logarith-

mic singularity if = n).

(iii) Y.(z) Y (z) 1 as IzI in S. Diag( 2 2-),j = 1,2,

Q(z) :E Diag(q,-q), (4.8)

q xt, Y(z) is holomorphic at z
2i, ~

(iv ) Y(o)( ize ( )(z )MO  as z - , M 0 (0Me iI 0)

e

(4.9)

J 0 0 i0 0 0 # n, Jo = 1 if 0 = n.

(v) Y 1)(ze2i ) = Y 1 zM ,  as z 1 1, M I
(v (1)(z (0 e1 ~Z 1  1 .eT® iD

(4.10)

Jl =  0 if n, J1 1 1 if a n.

(vi) Y2 (z) Y1(Z)G1 , Y1(Z) = Y2 (ze 2i )G2M., (4.11)

where

G1  aG 2  ), M. Diag(e e ) (.12

(vii) Y = Y (0)E0 1 det E0  1; YI Y ( )EI, det E 1 1. (4.13)

(viii) Let Y+, Y_ dentoe the limits of Y as it approaches C3 from above

and below respectively. Then

Y+ Y E1 I M E1 " (4.14)
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Furthermore, the parametersn
MD 1 {a,b,a O, Bo , g 0' YI' Bi' Y1 , 9 ,

i.e. the entries of GIt G21 E0 1 EP satisfy the following con-

sistency conditon,

(ix) GG 2M E0IM01 EEiMI1E 1* (4.15)

Proof.

1. Analysis near z = 0:

Let Y(O)= (y(0) y( ) then for z, < 1 we find:(0 ( )

0o/ v 0 v UrV~)Y(0) (Z) =z -j.0-e ( Y -vo) (K (2) z + 0 n
1 \( 4.16a))

"()Z _eo0/2e o CT00
Y(0 )(2) (4.16b)

where,

v11 V+6o" v~e e 0
v e v+ °

L O ( w)(l I -- ) y+-T(w + --) - y(w - 2

*0
t 181,

%o(t) $ j wpv. + t)dt'.

Expressions for K I), L I) may be given, but they are not needed in the discussion-
The constants with respect to z multiplying the { above are fixed by

the requirement that equations (4.16) satisfy (4.1b). We note that when
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0  = n there will be, in general, a logarithmic term and the two

linearly independent solutions are

(i) (Y 2 )  ) I -10/12 ) 2)Y ( )(z) Y ( )(Z) = J0(in z)Y (0 (z) + z Y ( ) ' 0 =  n (4.17)

where Ji s a complex constant and Y 0)(z) is a polynomial in z. Equa-02iiD%

tions (4.16) imply Y(0 )(ze 2ir) = Y0 (z)e . Similarly equations

(4.16), (4.17) imply (4.9).

2. Analysis near z = 1:

Let Y(1)= (Y(1)' Y (1) then for Iz.-1)< 1 we find

(1)IY I (Z) = (z-i) G e yw+61 /2 (z "' n
1 (2)

K 1 U *e 12 1 e/20K+Z
Uy /

where,

KI (2 uy/ ( V  O °  " +v+ 6 -)(w + 0 -1 )+ + L(1l+w 6 -]

(2). I+w-61/2 r w+612 t e. 1+2w
1 18 y(l+wo/2) (vo0) v + -)l+w-e 1 2 )]

ft y 1

(1)t) 1 - + (- 2dt'.
y(1)(z), Y ) (Z)= JiC n(z-1)]Y(1)(Z) + (zY) Y ( 1 )(z) ?- =

(4.19)

where J is a complex constant and Y ( z) is a polynomial of z-1.

Expressions frL K(I) may be given but they are not necessary in this

discussion.
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3. Analysis near z

The two linearly independent formal solutins of (4.19) have the

expansions

(1) e + + (4.20a)

yO( z) () - e- + . (4.20b)
zK

where,

e1 el zt
K 4- .v - rw +)][v y(w_ - )]. w, q Zt

Using similar arguments to those used in Proposition 3.1 we obtain

(4.11).

Let J denote the monodromy matrix of Y at z = 1. Then Y + = YiJ "

However, Y = (1)EI and MI is the monodromy matrix of Y(1)" Hence

J1 = E, MIEI ' which implies (4.14).

(4) Consistency.

Let J1 and J denote the monodromv matrices of Y at z = I and z 0

respectively. Equations (4.11) near z = 0 imply:

Y1 (z) = Y2(ze 2i)G 2M. = Y+ (ze2i  )GIG 2M : Y+(z)JoGIG 2 M = YI(z)JIJoGIG2 M.
-1- 2- 1 -011 1012

Thus G1G2M
: J=0 J1  . But J = E IMIE1 9 0 = E0 M0E, thus equation

(4.15) follows.
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Proposition 4.2.

(i) The monodromy data, MD, defined in Proposition 4.1 are time in-

variant.

(ii) All of the MD can be expressed in terms of two of them. This

follows from:

1. det E0 = det EI  1.

2. Equation (4.15).

3. If Y solves (4.1) with y satisfying PV, then Y R-1 yR,

1/2 -1/2
R 1 Diag(r ,r ), r constant, also solves (4.1) with y satisfy-

in PV. The Stokes matrices Gi and the connection matrices EO, EI

are transformed to G R 1 G.R, Ei P ERR, j 1,2, i 0,1,

i.e.

a : r a , b : b / r , a I i t i t ii i / r , , i O ' i : ( 1 2 1 )

4. Changing the arbitrary integration constants - 0

amounts to multiplying Y M z Y (z) by p and p = 0,1,

respectively. This maps Ei to E. PiEi Pi D 0 p ), i.e.

Yi i

i =  pi i i =  p Bgi i = p i = , i = 0,1. (4.22)

Proof.

Similar to that of Proposition 3.2.

4.2. The Inverse Problems.

In what follows we formulate a RH problem for the case that

TS0 < E)< 2, 0 < 01 < 2, 0 < < 2. This assumption leads to a regu-

lar RH problem.

IS
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Theorem 4.1.

Consider the following matrix, regular, homogeneous RH problem

along C1 , C2, C3 (Figure 4.1): Determine the sectionally holomorphic

function Y(z), (z) = T(z) if z in S., j = 1,2 from the following con-

ditions

1. T . satisfy the jump conditions

If2(¢ = ( )g1( ), TI( ) = 'F2(;)g2(C), '? ( ) = '?I( )g3, 4.

along the rays C2, C1, C3 respectively, where

gl9  2 Me - g3  E 1 M1E . (4.24)

2. (z) , (!)'-(I + 0(1)) as z! - (4 25)

z

3. T(z) has at most integrable singularities at z 0 0, z = 1, and z = and

the monodromy matrices off1 are given by

E0  e l 1 MEe M , (4.26)

respecitvely, where QI = Q(1). In the above Gj Q, Mo M I are

defined in Proposition 4.1.

4. The monodromy data satisfy the properties of proposition 4.2(ii'.

Then:

(i) The above RH problem is discontinuous at z = 0, 1, . Actually

3 -1M -1 Q-I -I1 Qi

= E 0 0E, z-0; glg 2 - M., z 9 ; 93 eE 1  Ee , 1.

(4.2')
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(ii) To obtain the solution of the above RH problem consider the follow-

ing RH problem along the contour C0 defined by Im z = 0:

Im z

k

,I v CO

k
2

Figure 4.2

Determine the sectionally holomorphic function k(z), k(z) k1 (z) if

Im z > 0, k(z) = k2 (z) if Im z < 0, from the following conditions:

1. kI, k2 satisfy the jump condition

SMh2- Re z < 0,( 2  2 
( 0 1

C 0 k I 2 1 h 1M 3  h 0 < Re z <1I M -/h I MM K1  Re z 1

h(z) = ) 2 (, 1 on C,, -1 on C,,

(4.28)

and hI , h2 denote h for Re z > 0, Re z < 0 respectively.
D1

2. k(z) (1) (I + 0(-)) as Izl * (4.29)z'z
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3. k(z) has at most integrable singularities at z = 0, z = I with

monodromy matrices given by

hl(O)E iMoEohI (0), hl(1)eQ(E 1 M1 Ele-Q(1 )h 1 (1) (4.30)

respectively.

The above RH problem is discontinuous at z = 0, 1, ®. Actually if

denote the jump matrices for Re z < 0, 0 - Re z < 1,

Re z > 1 respectively then

g gk M as IzI ; gl lgk h (O)E0 IM iE0h1 (0) as z - 0;
1 3 1 2

(4.31)

1 h (1)eQ(1)EIlM IEle-e(1)h1l(1) as zgk gk3  i i~' ~ sz

2 3

However, the above RH problem can be mapped to a continuous one using

the appropriate auxiliary functions (see Appendix B).

T is related to k via

T = k his =k hMM.' T2 = k h (4.32)

Proof

() The products of the jump matrices at a given point determine the

nature of the singularity at this point. Equations (4.27), which follow
-0/12, - 0 12 Z 0 '

from equations (4.24), imply: *(z) ' Diag(z z ) / * 0, *'1 t n

and T has also a log z term if 00 = n; IF(z) Diag((z-1) (z- 1) z

and T has also log (z-1) term in 01 n; T(z) , Diag((-), (- ) as
z z

Izi - . Hence T(z) is singular at z = 0, 1, . Assuming 0 0 s 6

0 01 < 1, 0 < 0 < 1, F(z) is integrable at the above points.



-47-

C2  C2

2 1i h2 hI k
C3  2 1

1C

Figure 4.3

(ii) Consider the following transformations

T + = k h A1 T- = k2h A2 ' I = k h2A3, ' = k2h2A4, (4.33)

where T' is T2 if Im z > 0 and if Im z< 0 (clearly IF, in SZ 2'-2 2'

however we use this artificial separation in order to make the h-RH

problem continuous).

Recall C2 : 2 = Ifg 1  C1 : 'l 
=  

2g2, C3: 1 = lg3 (4.34)

Equations (4.33), (4.34) imply:

C2 : h2 = h1A1g1A
1, CI: hI I h2A4g2A2

1

We choose the A's in such a way that the h-RH problem is continuous both

at zero and infinity.

Continuity at zero: A1g1 A3 A 4 92  I as z - 0,

-1al -

Continuity at infinity: A 1g1A3 1A 4 92A 2 1"I as z
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or
or A G A 1A G M A - I A A -IA m A

A1G1A3  4 2o2 1 13 4MA 2 I

or

M &AIA A A1  M1 , GMG2  M, i.e. M (4.35)

3 4 1 2 CO G M Mb M12 M22/

(assuming a,b,M 1 2 f 0). Hence the h-RH problem becomes

h2  hI  on 2 or h2 = hIAI Axt ,) A3
LAIMM 21M-IA31 on CI  ae 1

(4.36)

where A = -1 on C2, A 1 on C1. Let H2 = h 2A3, H1 
= h 1 A and (4.36)

reduces to

CI + C2: H2 = H 1( , : ) 1 on C1, -1 on C2.
ae i

(4.37)

Since the H-RH problem is continuous at we look for a solution such that

H I as z *

(H 2~ 'H 2 ) (H I 'H 1) + ae x(H 1 0),

or

H = H(1) H(1 ) = ae ( ).
1' 2 11

Thus

H : , as in (4.28). (4.38)

IF I1 on the Re z axis, for Re z 1 1, however equations (4.33a)
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(4.33b) imply that k1 # k2  for Re z > I (since A I # A 2 Hence, al-

though 'I has a discontinuity only along C3 (0 , Re z 1), k has a

discontinuity along the entire positive Re z axis. Similarly, equa:iors

(4.3 3c), (4.33d) imply that, although '2 is continuous in S-, w s d's-

continuous in S2 ; we choose the negative Re z axis to be t'le e

the discontinuity.

Let us now formulate the K-RH problem:

4. - + -

IM z C 0: * = IF, Re z , * 0 -.Pe z

Using (4.32) we find

2 43 2
Im z 0: k kI  k2 h A23A 1 h1 0 - Re z .1

h A A I h-Re z I1 A2 i~1 1

Using A4 = A 3M, A2  A I MM. we find

h2A3MA3Ih21 Re z 0

k I k2  hIAIMM 3A, h, 0 Re z < I

{hIAiMMAihi, Re z >

which, with the choice of A3  = I, MI2 1, M = 0, reduces to

(4.28). The k problem inherits its singularities from the problem.

Consider the product of the jump matrices at the singular points:

gk h 2Mh 2 h k 3 h IMM1 2 3
Then

-I -I 1 -
gk gk - M as ,z' - g k k - hI(O)E0  M0 ' E0h1  (0) as z 0,
1 3 1 2

Si
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gk gk3 % h I(1)eQ(1)EII e Q I h Ii (1) as z . ' .0l

2 3asZ .

Equations (4.40a), (4.40c) are obvious. To obtain equation (4.40b)

note:

h (O)h2( ) G, since o2(0)- 1(0) 1

(see (4.38)).

Hence,

kI ik h2(0)M 1h2(o)h 1(O)MM-g3 (O)h 1 (0) h1(O)G1M-IGIMM-g3 (O)h 1 (0) =1lg2

hI(O)GG2M.E1IMIElh 1 (0) = h 1(O)EJIM0EohI1(0), (4.41)

where we have used M IGIM = G2 (see (4.35)), and (4.15).

Equation (4.40b) implies that the monodromy matrix of k at the

origin is hI(O)E 0 M0E0h1 (0). This is consistent with the facts that

k + h and the monodromy matrix of t is EI MoEQ. Similarly for the
1 1 1 00

monodromy matrix of k at z = 1. Thus k has the same singularities as +.

These singularities can be removed by using appropriate auxiliary

functions.

Proposition 4.3.

Let T(z) be the solution matrix of the inverse problem formulated

in Theorem 4.1. Then y(t), which may be obtained from (4.1a), (4.2a),

solves PV.

,i6,



4.3. Schlessinger Transformations.

Proposition 4.4.

Let y and y' be solutions of PV equation (4.4) with ', , and

', ', ' respectively, where ot, 3, "! are related to T'0, 0 1, via

(4.4). Let Y, Y' be solutions of the corresponding isomonodromic prob-

lem (4.1). Consider the sets of transformations:

°06 C0 + n0" 6: ': + n

00 '0

a: 0 = b: = +n c: + m,

0' = m +' M + m :

where, n,m are either even or odd integers. (4.42)

Then:

(i) The monodromy data for Y and Y' are the same.

(ii) The solution of the inverse problem for Y' can be obtained from Y:

Y' = RY; a: R(z) is z 1/2 times a rational function of z, 0

b: R(z) is (z-1)1 / 2  times a rational function of z, (4.43,

c: R(z) is z 1/2(z-1)1 / 2  times a rational function of z.

In partiuclar: 0

C'' + I
0: 0

0 I/ R1 (z) = 0)zl/2 +

I

-[v (+ ] [ (

- + - ] [(V + ()] (v - -(w + -) )

tu y y

(4.44a)
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R 2(z) 0 ) i2 +
0' o -1

/ I + 00 - 1w 2 00o - yAw - 2 )]

- z1 (4.44b)

u

g6o~ +1 11-I zl/2

0 0 , R3 (z) 0 Z +

1 O 1 -)

v + oo - Yw- - v+0 - -qv + "o - y(w - ) / (
( 1

u(v+0 O)

= (o 0) 1/2 +

1 R4(z) 0 1
0I

-u

( [12 (4.44d)

IV l[- (w + I)] v - ( )

0 1 1

' 0 +



R5 (z) + + pj - )w 1

where w 4: (w- 01 2)1(w + 0 1/2).

Oj~ ~ 01-1. 6  112

Oi 0~, R z1Z1

0.
TlV+ 00o y w -- ! I - + 00- - 1 ) (z1 2,

uy (4.44f)

'112
0 0 21

1 + 1, R7(z) K /

-1-

K uy1

/ 1 - uy *
( (Z~)lf 2(4.44h)

1 [v - (w + I- [V - l + I
y t y



-54-

The transformations (4.44) generate all the Schlesinger transformations

specified by (4.42). For example,

Rj+IR = I, j = 1,3,5,7; R1R 7  R9; R2R 8  R 10, etc.

where

R9: 06  0 + 1i, (D 01 + 1, = 0

R1 O: 1 '0  = -1, j = -0 1 . (4.45)

The above transformations induce transformations mapping solu-

tions of PV to solutions of PV with parameters related as in equations

(4.42).

Proof

Equation (4.15) is invariant under the transformations ,

01 0{, 0 - (' iff the O's transform as in (4.42). It will turn

out that it is sufficient to consider m = n = 1. Since Mi, M M11

-M assuming Y' RY, equations (4.23) imply

+ +

a: R2 =R 1 , B: R2  R, c R2 =R 1  on 02

R + R R + -R R +  -R on C3 (4.46)

R -R R R R R on C.
R - 2  R1  2 1 21

a: b: c:

C3 C3

~Cl Cl

Figure 4.4



Equations (4.46) imply (4.43); to determine completely the form of

R(z), use Y' = RY and the boundary conditions for Y to obtain appropri-

ate boundary conditions for R (the details are given in [45]).

3.4. Special Solutions

Example 4.1.

Let G.= -(o0 + Di), 0 < GO < 1, 0 < 1 I < I and assume that

a = 0. Then aI = Y1 = YO = 0, and the solution of the RH defined in

Theorem 4.1 is given by

D0/2 1/2 bz -0 0/2 - 2 d~e t O(Z (z-l) b z i ' 'I !

/~o/(z) =( 2 i JC -z

1O 2  - /2

0 z 0(z-l)

(4.47)

where the contour C is along C1 in the S2 region. Hence associated with eQuat;cr

(4.47), is a solution y of PV which is proportional to W, where W01, l(t),

denotes the Whittaker function [55].

To derive the above, note that in this case the basic RH problem

reduces to

Cl

Figure 4.5



Im z 0, Re z 1
+ -I

Im z = 0, 0 - Re z < 1: e ,->: e , 0(l 
.

r 
i1. - -..,- +

c e= e be

(4.48)

Letting F = (Ti'2 ) the above reduces to

+ - +

4', TM1  M'T2 + 8 I (4.49)

Equaiton (4.49a) implies

T z0/2 (z-1) .2 (4.50)

The "homogeneous" version of (4,49) yields

:(z 0  (z-l) 91  0 /)0/2 /2

0 (z-)

(4.51)

Thus the solution of (4.49) is given by

= (z)(I + -L{ d~f(__)), (4.52)(z : ( ( +TT c C -z '

where f = (0, i)() .e.

-iw+ t[ 9j0/12 i/2 0 /2 1/2

11 12 22 , be ( -I) (;-1)

where - and + denote the limits of z in S2 and SI respectively. Since

f = be 0t( I()1) 2 we obtain (4.47).



APPENDIX A

In Theorem 3.1 we mapped the basi: Pr7pD, which underlies *he ritia, alue

problem of PIV to a simpler RH problem, i.e. eQuations 3.23)-(3.26- This K.-

problem is discontinuous both at zero and n#; Actually the product

of the jump matrices at z = C and z is given by

hi()E 0 'M E 0 h-1 M

respectively. We now map this discontinuous problem to a continuous one.

The basic idea is to use appropriate discontinuous auxiliary functions

such that the product of the jump matrices of the transformed problem is

I. This procedure is the well known [46] so the derivation is omitted

(details are given in [45]).

Proposition A.I.

Consider the k-RH problem formulated in Theorem 3.1 and defined by

equations (3.23)-(3.26). Assume 0 < -0  1 1, 0 1 1, 0 17/2.

Define the sectionally holomorphic function W(z), -(z) :-(z) if z is in

SI + S2 , C(z) ( €+(z) if z is in S3 + S4 as follows:

C 3

k1(x), i(x)

k((x), 
) 1 )

C'

Figure A.1
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k1(z) = -(z)X(z)R.X(z)R, z in S1 + SA

(A.2)

k2 (z) = P+(z)X+(z)R'X(z)R+, z in S +S

where,

0 -O "'-
Xo(z) = Diag[(-, 0,) 0, 0 X(z) Diag[(--1 )J0 (j-) 0 (A.3)

0 Q  .I -  +10z1 z_-1 l

X(z) Diag[(-L-) f, - ] X4(z) Diag[( (A.4)

The auxiliary functions XO, X are defined with respect to a finite branch

cut from z = -1 to z = 1, and an infinite branch cut from z 1 to z = -1

respectively; these branches are specified by

lim X0 (z) = I, lim X (z) = I. (A.5)izl-- 0z-0

The constant matrices Ro, R. are defined by:

(0) Ri EoG R R)- R (RM
(0), M, = Diag ,- -0: 0t' 1 E0G1G2G3  1 (0) 0 R 1 R rOJ-

(A.6)

Then the P-RH problem,

C() -(P )X_ I ( X (C )LA ( JR\X J)R ]- * (A.7)

-(z) * I as 1z! in SI  + S2,

where gK is the jump matrix of the k-RH problem given by (3.23), is con-

tinuous.

Remark A.I.

The case 0O = 0 can be handled in a similar way: in this case k
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X01 X I are defined with respect to finite branch cuts between z = z0 +

and z = z = i - i passing through z = 0 and z = I respectively; X_ is

defined with respect to an infinite branch cut between the points z = z0

and z = Z These branches are normalized by

lim Xo(z) = I, lim X1 (z) = I, lim X (z) = X O' lim X (z) =  X. i'
Iz jzj-l~ I- z-O O' z-1 C'

(B.5)

with [x (-+)]-1 X_(--) = M . If the constant matrices are appropriately

chosen then (z) satisfies a continuous RH problem (the detail. can be

found in [45]).

Remark B.1

The cases o0 = 0, 01 = 0 can be handled in a similar way. The

logarithmic singularities can be removed by using

x(z) =I knlF )

where Zo, Z0, z1, 21 corresponds to F

( z Z___, (2), ( ) respectively.

0 0
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